Дано: ΔАВС -прямоугольный, окружность с центром О, АС=5, ВС=12. Решение: АО=ОК=R - радиусы окружности проведем еще один радиус R в точку касания Н. следует знать теорему: "Радиус, проведенный в точку касания перпендикулярен самой касательной." То есть ∠ОНВ=90° по теореме Пифагора найдем гипотенузу АВ АВ=√(АС²+ВС²)=√(5²+12²)=13 Если АВ=13 и АО=R, то ОВ=АВ-АО=13-R рассмотрим ΔАВС и ΔВОН ∠АСВ=∠ОНВ=90° ∠АВС -общий, следовательно треугольники подобны по двум углам. Если треугольники подобны, то можно составить пропорцию
Т.к. периметры подобных треугольников относятся как длины соответствующих сторон, то, например, для указанных в задаче средних по величине сторон справедливо такое же отношение как и для периметров треугольников, т.е. 3:4. Пусть а,b,c и А, В, С - соответствующие стороны подобных треугольников. Из сказанного выше следует, что b:B=3:4. Отсюда По условию b+B=112. Решим уравнение: Пусть для одно из треугольников a:b:c=4:8:7. Тогда на длину 48 приходится 8 равных частей (всего частей 4+8+7=19). Одна часть равна 48:8=6. Отсюда а=4*6=24 и с=7*6=42. Стороны одно из треугольников найдены и равны 24; 48 и 42. Стороны второго треугольника больше в раза соответствующих сторон первого треугольника. Найдем их. Стороны другого треугольника тоже найдены и равны 32; 64 и 56. ответ: 24; 48; 42 и 32; 64; 56.
Найдем угол ADC= 360-(135+90+90)=45
Проведем из С высоту к АD и получим прямоугольный треугольник СС1D и прямоугольник АВСС1, значит ВА=СС1=5см, а ВС=АС1=6см
Рассмотрим прямоугольный треугольник СС1D:
Найдем угол С1СD=180-(90+45)=45, из этого следует, что треугольник СС1D равнобедренный и СС1=С1D=5см. Зачит АD=6см+5см=11см
Исходя из теоремы Пифагора найдем сторону СD=корень из 5в квадрате+ 5в квадрате=корень из 50=5корней из 2
ответ:АD=11см, СD=5корней из 2