Пусть луч С образует равные острые углы со сторонами а и b. Рисунок: http://cs320523.vk.me/v320523893/56a2/e6StbuOKYME.jpg Проведем отрезок АВ, как показано на рисунке. Он пересекает прямую с либо на луче С, либо на его дополнении, но его дополнение он пересекать не может, т. к. в этом случае дополнение луча С являлось бы биссектрисой, но по определению биссектриса не может образовывать со сторонами угла тупы углы.
Таким образом, луч С проходит между сторонами угла.
По определению биссектрисы луч С является биссектрисой, что и требовалось доказать.
Окружность, центр которой принадлежит стороне AB треугольника ABC, проходит через точку B, касается стороны AC в точке C и пересекает сторону AB в точке D. Найдите больший угол треугольника ABC (в градусах), если AD:DB=1:2 ----------- Центр окружности лежит на АВ, следовательно, АD- диаметр. Проведем радиус ОС . Т.к. С - точка касания, ОС ⊥ АС. Треугольник АОС - прямоугольный. ОС=ОВ=ОD=r, АD:DB=1:2 ⇒ AD=DO=OB=r В прямоугольном треугольнике АСD гипотенуза AO=2 r=2 OC ⇒ sin∠OАС= OС:АО=1/2 ⇒ Угол ОАС=30º,⇒ угол АОС=60º, а смежный с ним угол ВОС=180º-60º-120º Острые углы равнобедренного треугольника ВОС равны (180º-120º):2=30º⇒ Больший угол АСВ треугольника АВС равен ∠АСВ=∠АСО+∠ВСО=90º+30º=120º
Рисунок: http://cs320523.vk.me/v320523893/56a2/e6StbuOKYME.jpg
Проведем отрезок АВ, как показано на рисунке. Он пересекает прямую с либо на луче С, либо на его дополнении, но его дополнение он пересекать не может, т. к. в этом случае дополнение луча С являлось бы биссектрисой, но по определению биссектриса не может образовывать со сторонами угла тупы углы.
Таким образом, луч С проходит между сторонами угла.
По определению биссектрисы луч С является биссектрисой, что и требовалось доказать.