Проекция наклонной на плоскость - это отрезок один из концов которого есть один из концов наклонной принадлежащий данной плоскости, другой - перпендикуляр, опущенный из второго конца наклонной на данную плоскость. Рассмотрим треугольник, образованный наклонной, ее проекцией и перпендикуляром опущенным из конца наклонной не принадлежащего данной плоскости на эту плоскость. Он прямоугольный. Если катет вдвое меньше гипотенузы, то угол противолежащий катету равен 30 градусов, следовательно угол фи равен 180 - (90+30)=60
1. Справедливо третье равенство. Для доказательства записываем сумму углов треугольника ABC:
A+B+C=180°,
а также сумму углов треугольника AOC:
A/2+C/2+∠AOC=180°.
Умножая второе равенство на 2 и вычитая из полученного равенства первое, получаем
2∠AOC-B=180; ∠AOC=90°+B/2
2. Справедливо второе равенство. Для доказательства обращаем внимание на то, что если высоты AA_1 и CC_1, то в четырехугольнике C_1BA_1O углы C_1 и A_1 - прямые⇒B+∠C_1OA_1=180°⇒ ∠AOC=∠C_1OA_180°-B.
Замечание. По умолчанию мы считали известным, что треугольник остроугольный.