На биссектрисе угла ВАС отмечены точки О и D так, что A–O–D, углы АОС и АОВ равны. Точки С, О и В не лежат на одной прямой. Докажите, что треугольники ABD и ACD равны.
Сейчас : ) площадь полной поверхности (sполн) равна 36. решение: sполн = 4sграни + 2sоснования. грани в прямой призме с основанием в виде ромба равны. sграни=h*a=3а, где а - сторона ромба. sоснования=2*sтреугольника. sтреугольника=(а*h)/2, так как треугольник с углом 60 град - равносторонний. далее sоснования=2*(a*h)/2=a*h=3а=sграни; sполн = 4sграни + 2sграни = 6sграни = 6*3*а= 18*а. теперь осталось найти а. рассмотрим равносторонний треугольник (половина основания призмы).найдём высоту: h=(2√3)/2; теперь рассмотрим прямоугольный треугольник (половина основания призмы) и найдём а. cos(60град/2)=((2√3)/2)/а, отсюда √3/2=√3/а, а=2. подставляем в формулу sполн = 18*2 =36
Прямая призма. Sбок пов.=Росн*Н Pосн=4*с, с - сторона ромба диагонали ромба перпендикулярны и точкой пересечения делятся пополам. прямоугольный треугольник: катет а= 8 см(16:2) - (1/2) диагонали ромба -основания призмы катет b =15 см (30:2) - (1/2) диагонали ромба гипотенуза с - сторона ромба по теореме Пифагора: c²=8²+15², c=17 см бОльшая диагональ призмы =50 см -наклонная. Большая наклонная имеет бОльшую проекцию, => рассмотрим прямоугольный треугольник: гипотенуза с=50 см - бОльшая диагональ призмы катет а= 30 см - бОльшая диагональ основания призмы катет H - высота призмы, найти. по теореме Пифагора: 50²=30²+H². H²=1600. H=40 см