Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
У правильной треугольной пирамиды основание - равносторонний треугольник, высота опускается в его центр. Смотри рисунок. Слева показана сама пирамида, справа ее основание. Из прямоугольного треугольника SDO ясно, что OD = L*sin α Но мы знаем, что точка О - центр треугольника - делит высоту в отношении 1 : 2, то есть CD = 3*OD = 3L*sin α С другой стороны, мы знаем, что в равностороннем треугольнике высота CD = a*√3/2, где a = AB = AC = BC - сторона треугольника. Получаем a*√3/2 = 3L*sin α a = 6/√3*L*sin α = 6√3/3*L*sin α = 2√3*L*sin α Площадь боковой стороны S(ABS) = S(ACS) = S(BCS) = a*L/2 = 2√3*L*sin α*L/2 = √3*L^2*sin α Площадь всей боковой поверхности пирамиды S(бок) = 3*S(ABS) = 3√3*L^2*sin α
Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей
Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.
Сторона АЕ треугольника АДЕ равна АС+СЕ:
АЕ=8+4=12 см.
Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5
Найдем стороны треугольника АДЕ:
АД=АВ*k=10*1.5=15 см.
ДЕ=ВС*k=4*1,5=6 см.
ВД=АД-АБ=15-10=5 см.
ответ: ВД=5 см. ДЕ=6 см.