Точки M і P належать відповідно на сторонах AB AC трикутни- ка ABC, причому MPAC. Знайдіть довжину відрізка MP, якщо AC 216 см, СВ= 8 см, РВ=5 см. А12 см Б 8 см В 10 см T 14 CM
Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4