Дано: δ авс ∠с=90° ак - биссектриса ак=18 см км=9 см найти: ∠акв решение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км рассмотрим полученный δакм, т.к. ∠амк=90°, то ак - гипотенуза, а км - катет поскольку, исходя из условия, катет км=9/18=1/2 ак, то ∠кам=30° т.к. по условию ак - биссектриса, то ∠сак=∠кам=30° рассмотрим δакс по условию ∠аск=90°; а ∠сак=30°, значит, ∠акс=180°-90°-30°=60° искомый ∠акв - смежный с ∠акс, значит ∠акв=180° - ∠акс=180°-60°=120° ответ: 120°
Всё это нужно доказывать при трёх признаков равенства треугольников
рис. 1 - две стороны треугольников соответсвенно равны (ВС=СД, АС=СЕ), как и углы между этими сторонами (ВСА=ЕСД так как они являются вертикальными углами). в целом признак звучит как «Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны»
рис. 2 - тут тот же признак. две стороны и угол одного треугольника соответственно равны двум сторонами и углу второго треугольника (ДЕ=ДК, ДС - равна для обоих, ибо является общей, углы ЕДС=СДК)
рис. 3 - треугольник ВЦП равнобедренный, то бишь медиана, делящая основу ВР на две равных части, выступает, к тому же, и высотой. Тогда, по первому признаку равенства треугольников, треугольники ВЦО=ЦОР (ВО=ОР, ЦО общая, прямые углы одинаковы для обоих треугольников из-за проведённой высоты)
рис. 4 - всё то же самое, главное найти соответственные стороны и углы. СФ=ДЕ, СЕ - общая, углы ФСЕ=СЕД (как внутренние разносторонние углы при параллельных СФ и ДЕ и секущей СЕ)