ABCDS - правильная пирамида.
Значит АВСD - квадрат. <SAO=60° (дано), <ASO=30°, так как треугольник АSO - прямоугольный (SO- высота пирамиды).
АО=12:2=6 см (как катет, лежащий против угла 30°).
Треугольник АОD - прямоугольный (АС и ВD - диагонали квадрата и AO=OD, а <AOD=90°).
Тогда АD=√(2*AO²)=АО√2 или AD=6√2. АН=3√2 см.
Апофема (высота грани) SH=√(AS²-AH²)=√(144-18)=3√14 см.
Площадь основания равна AD²=72 см².
Площадь грани равна (1/2)*SH*AD или
Sг=(1/2)*3√14*6√2 или 18√7.
Sполн=So+4*Sг=72+72√7=72(1+√7) см².
ответ: S=72(1+√7) см².
MO_|_(ΔABC), O- центр треугольника - точка пересечения медиан, биссектрис, высот
по условию пирамида правильная, => в основании пирамиды правильный треугольник
площадь правильного треугольника вычисляется по формуле:
MK_|_AB,
CK_|_AB.
CK в точке О делится в отношении 2:1, считая от вершины С.
прямоугольный ΔМОК: <MOK=90°, MK=5 см, OK=(1/3)*CK
CK -высота правильного треугольника вычисляется по формуле:
ΔMOK:<MOK=90°, MK=5 см -гипотенуза
ОК=3 см -катет, => МО=4 см. Пифагоров или Египетский треугольник
ответ: высота правильной пирамиды 4 см