АБСД (нумерация с левого верхенего угла и по часовой) прямоугольник, следовательно точкой пересечения диагонали делятся пополам. Рассмотрим треугольник АБС - прямоугольный, у него известно 2 стороны - АБ и БС, значит можно найти и гипотенузу по т. Пифагора : АС = корень из (36 + 64) = 10,т. к. нас интересует только часть гипотенузы до т. О, следовательно точка О делит пополам, значит отрезок АО = 5. треуголник АОБ - равноб, т. к. АС и БД равны по свойству прямоугольника. Сразу можем найти периметр ( Ртреуг. АОБ = 5*2 + 6 = 16
разделим треуголник АОБ на два равных, дляэтого опустим перпендикуляр ОК из точки О на сторону АБ, ОК будет являтся и высотой, и медианой и биссектрисой (по свойству равноб треуг) Но нас интересует лишь свойство медианы, то есть делит противополож сторону пополам, следовательно АК=КБ= 3)
найдем из т, Пифагора сторону ОК = корень ( 25 - 9) = 4 значит площадь треугольника АОБ = 1/2(6*4) = 12
1 Если известны величины двух углов произвольного треугольника (β и γ), то величину третьего (α) можно определить исходя из теоремы о сумме углов в треугольнике. Она гласит, что эта сумма в евклидовой геометрии всегда равна 180°. То есть для нахождения единственного неизвестного угла в вершинах треугольника отнимайте от 180° величины двух известных углов: α=180°-β-γ.2Если речь идет о прямоугольном треугольнике, то для нахождения величины неизвестного острого угла (α) достаточно знать величину другого острого угла (β). Так как в таком треугольнике угол, лежащий напротив гипотенузы, всегда равен 90°, то для нахождения величины неизвестного угла отнимайте от 90° величину известного угла: α=90°-β
Уравнение кривой второго порядка привести к каноническому виду. Выяснить тип кривой и сделать чертеж.
9x^2+18x-4y^2-27=0
Объяснение:
9x²+18x-4y²-27=0 , (9x²+18x+9)-9-4y²-27=0
9(x²+2x+1)-4y²=36 , 9(x+1)²-4y²=36
(x+1)²/4-y²/9=1 .Гипербола.
Центр в точке (-1;0), полуоси а=2 , в=3. Найдем с=√(4+9)=√13.
Асимптоты у=±3/2*(х+1). Фокусы (√13-1;0), (-√13-1;0).
Эксцентриситет ( ε=с/а) ε=√13/2≈1,8.