Теорема о сумме углов треугольника — классическая теорема евклидовой . утверждает, что сумма углов треугольника на евклидовой плоскости равна 180°. из теоремы следует, что у любого треугольника не меньше двух острых углов. действительно, применяя доказательство от противного, допустим, что у треугольника только один острый угол или вообще нет острых углов. тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. сумма этих углов не меньше 180°. а это невозможно, так как сумма всех углов треугольника равна 180°. доказательство пусть {\displaystyle \delta abc} — произвольный треугольник. проведём через вершину bпрямую, параллельную прямой ac. отметим на ней точку d так, чтобы точки aи d лежали по разные стороны от прямой bc. углы dbc и acb равны как внутренние накрест лежащие, образованные секущей bc с параллельными прямыми ac и bd. поэтому сумма углов треугольника при вершинах b и с равна углу abd. сумма всех трёх углов треугольника равна сумме углов abd и bac. так как эти углы внутренние односторонние для параллельных ac и bd при секущей ab, то их сумма равна 180°. что и требовалось доказать.
1. Найдите диагональ квадрата, если его площадь равна 12.5. Формула площади квадрата через диагональ d² = 12,5*2 = 25 ⇒ d = √25 = 5 Диагональ квадрата равна 5
2.Найдите сторону квадрата, площадь которого равна площади прямоугольник со сторонами 13 и 52. Площадь прямоугольника: 13*52 = 676 Площадь квадрата: a² = 676; a = √676 = 26 Сторона квадрата равна 26
3. Найдите площадь параллелограмма, если две его стороны равны 40 и 10, а угол между ними равен 30. S = 40*10*sin30° = 400*1/2 = 200 Площадь параллелограмма равна 200
4. Периметры двух подобных многоугольников относятся как 1:3, Площадь меньшего равна 3. Найдите площадь большого. Коэффициент подобия k=1/3. Площади подобных фигур относятся как коэффициент подобия в квадрате. S₂ = 3*9 = 27 Площадь большего треугольника равна 27
5. Площадь круга равна 121:3.14. Найдите длину его окружности. π≈3,14. Формула площади круга Формула длины окружности Длина окружности равна 22
6. Найдите площадь сектора круга радиуса 48:(квадратный корень пи), Центральный угол которого равен 90 Формула площади сектора с центральным углом α Площадь сектора равна 576