Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²
Пусть х см – одна сторона прямоугольника, тогда другая сторона будет равна (х + 6) см. Т.к. площадь это произведение сторон и она составляет 112 см2, тогда получим уравнение:
х * (х + 6) = 112,
х2 + 6х = 112,
х2 + 6х - 112 = 0.
Для решения рассчитываем, чему равен дискриминант:
D = b2 - 4ac,
D = 36 - 4 * (-112) = 36 + 448 = 484.
Находим корни уравнения:
х = (-b ± √D) / 2a
х = (-6 ± 22) / 2
х1 = -14, х2 = 8.
Длина может быть только положительной величиной.
Тогда длина составит:
8 + 6 = 14 (см).
ответ: стороны равны 8 см и 14 см.
Объяснение:
20+3*2=23см отрезок равен