Даны две скрещивающиеся прямые, расстояние между которыми равно x. Прямая l пересекает две параллельные плоскости, проходящие соответственно через данные скрещивающиеся прямые, в точках A и B. Если угол между прямой l и ее проекциями на этих плоскостях равен 45°, а длина отрезка AB равна найди расстояние между скрещивающимися прямыми.
Тогда:
1. Проводим из произвольной точки В две концентрические окружности радиусами АВ (боковая сторона треугольника) и ВD (биссектриса угла В).
2. Проводим прямую ВD1, равную двум отрезкам ВD.
3. Строим перпендикуляр к середине отрезка ВD1 (то есть перпендикуляр к прямой ВD1, проходящий через точку D). Для этого из точки D1 радиусом АВ проводим окружность и соединяем точки А и С пересечения двух окружностей радиуса АВ.
4. Соединив полученные точки А и С с точкой В получаем искомый равнобедренный треугольник АВС.