Если CD - биссектриса, то угол ACD=DCB. Рассмотрим треугольники ACD и DCB:
CD-общая сторона, а угол ADC=CDB(по условию), значит треуголник ACD=DCB по стороне и прилежащим к ней углам (по 2-ому признаку равенства треугольников), следовательно угол А=В.
1) В прямоугольнике все углы прямые. Пусть один острый угол pk°, второй qk°. pk+qk=90 k=90/(p+q) Один угол 90p/(p+q) градусов, второй 90q/(p+q) градусов. Стороны прямоугольника d·cos(90p/(p+q) ) и d·cos(90q/(p+q) )
Р=2·(d·cos(90p/(p+q) ) + d·cos(90q/(p+q) ))
2) Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
1) В прямоугольнике все углы прямые. Пусть один острый угол pk°, второй qk°. pk+qk=90 k=90/(p+q) Один угол 90p/(p+q) градусов, второй 90q/(p+q) градусов. Стороны прямоугольника d·cos(90p/(p+q) ) и d·cos(90q/(p+q) )
Р=2·(d·cos(90p/(p+q) ) + d·cos(90q/(p+q) ))
2) Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
Если CD - биссектриса, то угол ACD=DCB. Рассмотрим треугольники ACD и DCB:
CD-общая сторона, а угол ADC=CDB(по условию), значит треуголник ACD=DCB по стороне и прилежащим к ней углам (по 2-ому признаку равенства треугольников), следовательно угол А=В.