Точки М і K належать відповідно ребрам SB і SC тетраедра SABC, а точка N — грані ABC (рис. 115), причому прямі МК і ВС не паралельні. Побудуйте переріз тетраедра площиною MNK.
2 Периметр десятого четырехугольника равен 1,1 (1,125). Наблюдается геометрическая прогрессия, уменьшения площадей четырехугольников: площадь третьего меньше первого в 2 раза, 5-того в 2 раза меньше 3-го и т.д., аналогично и с четными четырехугольниками: Площадь четвертого меньше второго в 2 раза. Находим 5 четный член прогрессии по формуле (это и есть площадь 10 четырехугольника) b5=b1/gСтепень(5-1); Периметр b1 вычисляем начертив второй четырехугольник P=18см. Р=18/2 в степень(5-1)=18/16=1,125 см 1 Периметр первого равен 26 см Найдем периметр 9-того четырехугольника, это пятый в геометрической последовательности нечетных четырехугольников: Р=26/2 в степени(5-1). Р26/16=1.6 см
Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена. Сторона, к которой проведена высота, равна 3+12=15 м. Высоту нужно найти. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.