Дана равнобедренная трапеция АВСД. АД - большее основание, ВС - меньшее основание. Из вершины В проведена высота ВК. Средняя линия трапеции ЕР. Высота ВК пересекает ЕР в точке О и делин на отрезки ЕО=2см и ОР=6см.
Проведем вторую высоту из вершины С. (высота СМ) СМ пересекает ЕР в точке Н.
Т.к. трапеция равнобедренная, то ОН=ВС, НР=ЕО=2см. ОН=6-2=4см. Следовательно основание ВС=4см.
Средняя линия трапеции равна полусумме оснований. Пусть АД=х, тогда ЕР=(4+х):2=8
4+х=20
х=12см
ответ: меньшее основание=4см, большее основание=12см.
Найдем острые углы треугольника, они равны, т.к. треугольник равнобедренный:
180-120 = 60
60:2 = 30
проведем высоту к хорде.
малый треугольник - прямоугольник.
Катет, лежащий напротив угла в 30, равен 1\2 гипотенузы:
0,8м = 80см
80:2 = 40см
Найдем второй катет по т.Пифагора:
√(80²-40²) = √(6400 - 1600) = √4800 = √3*16*100 = 40√3
Найдем хорду: 40√3*2 = 80√3.
Второй
Найдем острые углы треугольника, они равны, т.к. треугольник равнобедренный:
180-120 = 60
60:2 = 30
По теореме синусов: b\sinb = c\sinc
b = c*sinb/sinс
b = 80*√3/2*2 = 80√3