АА₁=5см, S(бок. призмы)=10 см². Около призмы описан цилиндр
Найти R(цилиндра)
Объяснение:
"Призмой, вписанной в цилиндр, называют такую призму, основания которой вписаны в окружности оснований цилиндра, а боковые ребра призмы являются образующими цилиндра."
Т.к цилиндр описан около прямой призмы, то прямоугольный равнобедренный ΔАВС вписан в окружность , центр которой находится на середине гипотенузы. R=0,5*АВ.
Пусть катеты ΔАВС будут СА=СВ=х.
Тогда по т. Пифагора АВ²=х²+х² , АВ=2х², АВ= х√2 .
S(бок. призмы)=Р(осн)*h или
10 =(х+х+х√2)*5 или 10=х*(2+√2)*5 ,х=2/(2+√2)=2-√2 ( после избавления от иррациональности в знаменателе) ⇒
1)Пусть С- прямой угол в прямоугольном треугольнике АВС, тогда СН-высота проведенная к гипотенузе, СМ- биссектриса,проведенная к гипотенузе. 2)По условию сказано, что угол между СМ и СН равен 15 градусов. 3)По свойству биссектрисы угол АСМ= углу МСВ=45 градусов(т.к С по условию 90),значит, так как угол НСМ=15 градусов, а угол НСМ+угол АСН=45 градусов, то угол АСН равен 30 градусам. 4)Так как СН высота, то угол СНА равен 90 градусов, следовательно угол САН=60 градусов( по теореме о сумме углов треугольника). 5)Значит, в треугольнике АВС угол В = 180-90-60=30 градусов( по теореме о сумме углов треугольника) 6) Так как в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то АС=3 см 7) По теореме Пифагора СВ= 3 корня из 3 ответ: 3 и 3корня из 3
Дано АВСА₁В₁С₁- прямая призма? ∠С=90,СА=СВ,
АА₁=5см, S(бок. призмы)=10 см². Около призмы описан цилиндр
Найти R(цилиндра)
Объяснение:
"Призмой, вписанной в цилиндр, называют такую призму, основания которой вписаны в окружности оснований цилиндра, а боковые ребра призмы являются образующими цилиндра."
Т.к цилиндр описан около прямой призмы, то прямоугольный равнобедренный ΔАВС вписан в окружность , центр которой находится на середине гипотенузы. R=0,5*АВ.
Пусть катеты ΔАВС будут СА=СВ=х.
Тогда по т. Пифагора АВ²=х²+х² , АВ=2х², АВ= х√2 .
S(бок. призмы)=Р(осн)*h или
10 =(х+х+х√2)*5 или 10=х*(2+√2)*5 ,х=2/(2+√2)=2-√2 ( после избавления от иррациональности в знаменателе) ⇒
АВ=√2*(2-√2) =2√2-2 ,
R =(2√2-2):2=√2-1