Стороны египетского треугольника равны 3,4,5. Через центр вписанной в него окружности перпендикулярно гипотенузе провели прямую. Найдите длину отрезка этой прямой, заключённого внутри треугольника
Меньшая диагональ основания призмы (ромба) равна стороне ромба, так как в треугольнике АВD все углы по 60°. Итак, ВD=2√3. Половина большей диагонали основания - это высота правильного треугольника АВD и равна √3*а/2, где а - сторона ромба, или АО=3. Тогда АС=6см. В прямоугольном треугольнике BB'D катет BВ' лежит лежит против угла 30°. Значит B'D=2*B'B и по Пифагору 4B'B²-B'B²=BD², отсюда В'В=√(12/3)=2. Или так:В'В=BD*tg30°=2√3*(√3/3)=2. ВВ'=СС'=2. Это высота призмы. Тогда большую диагональ призмы найдем из треугольника АСС' по Пифагору: АС'=√(АС²+СС'²) или АС'=√(36+4)=2√10. ответ: большая диагональ призмы равна 2√10.
Тут всё просто) Каждую сторону или угол можно разбить на части, как и в этой задаче. Пример для этой задачи: В прямоугольном треугольнике один угол равен 90 градусов. 2 остальных не известны, но один равен 4 частям, а второй равен 5 частям. Попробуем найти. Мы знаем, что в сумма углов треугольников равна 180 значит 2 острых угла равны 90 градусов. Теперь мы попробуем найти, сколько приходится на одну часть.( Нам нужно найти 1 часть, чтобы потом мы могли найти 4 и 5 частей) Принимаем 1 часть за x Тогда: 4x+5x=90 9x=90 x=10, значит 9 градусов у нас приходится на ОДНУ ЧАСТЬ. А теперь узнаём, сколько это 5 частей и сколько 4. 4*10=40 градусов 5*10=50 градусов Значит ответ:50 градусов. То есть
Объяснение:
Дано: ΔАВС - прямоугольный.
АС = 3; АВ = 4; ВС = 5.
Окр. O,r - вписанная.
ЕК ⊥ ВС.
Найти: ЕК.
1. Рассмотрим АМОР.
∠А = 90° (условие);
Радиус, проведенный в точку касания перпендикулярен касательной.⇒ ОР ⊥ АС; ОМ ⊥ АВ.
Если две прямые перпендикулярны третьей, то они параллельны между собой.⇒ АМ || АР; АР || МО.
⇒ АМОР - прямоугольник.
Противоположные стороны прямоугольника равны.⇒ АМ = АР; АР = МО.
МО = АР = r ⇒ АМ = АР = АР = МО.
⇒ АМОР - квадрат.
2. Найдем r по формуле:
⇒ АМ = АР = АР = МО=1
3. Рассмотрим ΔАВС и ΔМВН - прямоугольные.
∠В - общий;
⇒ ΔАВС ~ ΔМВН (по двум углам).
Составим отношение сходственных сторон:
4. Рассмотрим ΔЕМО и ΔОКН - прямоугольные.
МО = ОК = r
∠1 = ∠2 (вертикальные)
⇒ ΔЕМО = ΔОКН (по катету и острому углу)
⇒ ЕО = ОН (как соответственные элементы)
МО +ОН = ЕО + ОК = МН =
⇒