Если координаты векторов пропорциональны, то векторы коллинеарны, найдем координаты АВ и СД и проверим данное условие.
Над векторами везде надо ставить стрелочки. У меня нет такой возможности. Поэтому не забудьте поставить.
Координаты вектора АВ ищем, вычитая из координат конца т.к. точки В координату начала вектора, т.е. точки А. т.е.
АВ(8;-7;10)
Аналогично СД(-6;-7;-3)
Видно, что координаты не пропорциональны. т.е. не выполняется условие коллинеарности 8/-6=-7/-7=10/-3.
ответ. Векторы не коллинеарны.
ADBE, ADCG
Объяснение:
Сириус курсы. Геометрия. 9 класс. v1.4. Радикальные оси. Задача №5.
1. Чертим 2 пересекающиеся прямые. Т.к прямые бесконечны, то их можно чертить в любых масштабах. Начертим , маленькие.
2.Отмечаем точки на них, подписываем цифрами длину отрезков.
3. Как известно из видео, которое ты невнимательно смотрела, длины если произведения отрезков, находящихся на одной прямой и имеющих общую точку соответственно равно произведению отрезков, находящихся на второй прямой, то эти отрезки лежат на одной окружности, а значит и точки, которыми соединяются отрезки лежат на этой окружности.
4. Перебираем варианты: ( О - общая точка пересечения нужных отрезков)
1. AO*OB = OD* OE
2. AO*OC = OG*OD
Следовательно подходят варианты:
ADBE, ADCG.
P.S. Курсы созданы, чтобы там стараться и додумывать самим)