6. Дано: ΔАВС, СР-биссектриса, АР=4 см, ВР=5 см
Найти: Периметр ΔАВС
1. СР- биссектриса ΔАВС => АР:ВР=АС:ВС
4:5=10:ВС
ВС=(5*10):4=12,5 (см)
2. Р(АВС)=АВ+ВС+АС=(АР+ВР)+ВС+АС
Р(АВС)=4+5+12,5+10= 31,5 (см)
ответ: 31,5 см
Объяснение:
7. Позначимо ромба АВСD, АВ = 5см, О - точка перетину діагоналей АС і ВD, АС = 6см. Знайти висоту АК
Розв"язання:
Діагоналі ромба рівні, звідси, АО = СО = АС/2=6/2=3, ВО = ОD
З прямокутного трикутника АВО( кут АОВ = 90 градусів):
За т. Піфагора
Звідси, діагональ ВD = 2ВО = 2*4= 8см.
Знаходимо полщу ромба
Тоді висота ромба дорівнює:
Відповідь: 4.8 см.
2. Из условия можно найти, что 120π=10π(r+R), откуда r+R=12.
3. В сечении такой конус представляет из себя равнобедренную трапецию, разделённую пополам (вертикально) высотой конуса, которая по условию равна 8. Одна половина представляет из себя прямоугольную трапецию, в которой высота равна 8, боковая сторона 10, а r и R- основания.
4. Из прямоугольной трапеции по т. Пифагора можно найти разность R-r. Она равна 6. Тогда, зная, что r+R=12 и R-r=6, находим, что r=3, а R=9