Довжина однієї зі сторін (в) дорівнює 4см, а периметр прямокутника (P) дорівнює 18см. Так як периметр будь-якої фігури дорівнює сумі довжин її сторін, а у прямокутника протилежні сторони завжди рівні, то формула його периметр а виглядатиме таким чином: P = 2 x (a + b), або P = 2a + 2b. З цієї формули випливає, що знайти довжину другої сторони (а) можна за до наступної нескладної операції: а = (P - 2в): 2. Так, в нашому випадку сторона а дорівнюватиме (18- 2 х 4): 2 = 5 см. 2 Тепер, знаючи довжини обох суміжних сторін (a і b), ви легко зможете підставити їх у формулу площі S = ab. В даному випадку площа прямокутника дорівнюватиме 5х4 = 20. Вроді би так. Вибач якщо є помилки
Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
2
Тепер, знаючи довжини обох суміжних сторін (a і b), ви легко зможете підставити їх у формулу площі S = ab. В даному випадку площа прямокутника дорівнюватиме 5х4 = 20.
Вроді би так. Вибач якщо є помилки