все боковые ребра пирамиды наклонены к плоскости основания под углом 60. Найдите высоту пирамиды, если ее основанием является треугольник АВС, в котором АВ = 6√3, <С = 120°
Шаг первый. В основании треугольник со стороной 6√3 см и противолежащим углом 120°⇒ по следствию из теоремы синусов отношение этой стороны к синусу противолежащего угла равно двум радиусам описанной окружности 2*R
Шаг второй. т.к. все боковые ребра пирамиды равны, то основание высоты пирамиды - центр описанной окружности радиуса 6см. которая равна расстоянию от вершины С до центра окружности и это расстояние - это проекция наклонной на плоскость основания. а угол наклона ребра к плоскости основания, равный 60°- это угол наклона ребра к его проекции, т.е. к радиусу описанной окружности.
Шаг третий. Чтобы найти искомую высоту пирамиды, коей является катет, лежащий против угла в 60°, в прямоугольном треугольнике, составленном из высоты - искомого катета ; известного катета -радиуса описанной окружности 6см, и наклонной пирамиды - гипотенузы, необходимо найти высоту. т.е. противолежащий углу в
60 ° , катет, по прилежащему катету 6см.
h/R=tg60°⇒h=R*tg60°=6*√3/cм/, здесь h- высота пирамиды, R -радиус описанной около основания пирамиды окружности.
Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
Параллельные прямые, которые исходят из точек С, Р и К перпендикулярны к прямой С1К1. Проведем CN, NP1,C1M, ML так, что CMPN и MLK1C1 - прямоугольники. Из условия СС1 = 3 см, РР1 = 5 см. Поскольку СС1Р1N - прямоугольник (три угла равны 90 градусов), то CC1 = NP1 = 3 см. Аналогично из прямоугольника MPP1C1: MC1 = PP1 = 5 см, из прямоугольника MLK1C1: МС1 = LK1 = 5 см. CM = NP = NP1 + P1P, CM = 3 + 5 = 8 см. Рассмотрим треугольники CMP и KLP: СР = РК по условию, <MPC = <KPL как вертикальные, <CMP = <KLP = 90 градусов. Следовательно, треугольника CMP и KLP равны по стороне и двум прилежащим к ней углам. Исходя из равенства треугольников, CM = KL = 5 см. KK1 = KL + LK1. Имеем: KK1 = 8 + 5 = 13 см. ответ: 13 см.
Задача состоит из трех шагов.
Шаг первый. В основании треугольник со стороной 6√3 см и противолежащим углом 120°⇒ по следствию из теоремы синусов отношение этой стороны к синусу противолежащего угла равно двум радиусам описанной окружности 2*R
6√3/sin120°=2*R⇒R=6√3/(2sin120°)=6√3/(2sin60°)=6√3/(2√3/2)=6(cм)
Шаг второй. т.к. все боковые ребра пирамиды равны, то основание высоты пирамиды - центр описанной окружности радиуса 6см. которая равна расстоянию от вершины С до центра окружности и это расстояние - это проекция наклонной на плоскость основания. а угол наклона ребра к плоскости основания, равный 60°- это угол наклона ребра к его проекции, т.е. к радиусу описанной окружности.
Шаг третий. Чтобы найти искомую высоту пирамиды, коей является катет, лежащий против угла в 60°, в прямоугольном треугольнике, составленном из высоты - искомого катета ; известного катета -радиуса описанной окружности 6см, и наклонной пирамиды - гипотенузы, необходимо найти высоту. т.е. противолежащий углу в
60 ° , катет, по прилежащему катету 6см.
h/R=tg60°⇒h=R*tg60°=6*√3/cм/, здесь h- высота пирамиды, R -радиус описанной около основания пирамиды окружности.
Отвте 6√3 см