Несмотря на то, что прямоугольный треугольник, сторонами которого являются высота, медиана и отрезок гипотенузы между ними, является Пифагоровым (8, 15,17), и высота делит гипотенузу, длина которой равна 17*2 = 34, на отрезки длиной 17 - 8 = 9 и 17 + 8 = 25 (как и положено, 9*25 = 15^2), сам треугольник не является целочисленным, и его катеты надо просто вычислить по теореме Пифагора.
В ромбе все стороны равны А также по условию диагональ равна стороне, значит треугольник, образованный сторонами и диагональю равносторонний, значит все углы по 60 Т.к диагонали ромба пересекаются под прямым углом, получаются 4 равных прямоугольных треугольника, а у одного из них один из углов 60, значит 2-ой угол прямоугольного треугольника = 30, а значит углы между диагоналями и сторонами ромба равны 30;30;60;60;30;30;60;60 (по часовой стрелке сверху) Диагональ ромба делит угол пополам - это свойство ромба, значит углы ромба равны 60;120;60;120 Проверка: 120+120+60+60=360 А сумма углов четырёхугольника = 360, значит решение верно!
Несмотря на то, что прямоугольный треугольник, сторонами которого являются высота, медиана и отрезок гипотенузы между ними, является Пифагоровым (8, 15,17), и высота делит гипотенузу, длина которой равна 17*2 = 34, на отрезки длиной 17 - 8 = 9 и 17 + 8 = 25 (как и положено, 9*25 = 15^2), сам треугольник не является целочисленным, и его катеты надо просто вычислить по теореме Пифагора.
Меньший катет равен √(9^2 + 15^2) = 3*√34;
Больший катет равен √(25^2 + 15^2) = 5*√34;
Ну да, еще периметр 34 + 8*√34 ;