Дано :
параллелограмм NPKA
<ANK = 45°
<KNP = 65°
Найти:
<А, <К, <Р, <N, <NKA, <NKP = ?
<N = <ANK + <KNP = 45° + 65° = 110°
<N = <K = 110° (св-во параллелограмма - противоположные углы равны)
<А = 180° - <К = 180° - 110° = 70° (свойство параллелограмма - углы, прилежащие к любой стороне, в сумме равны 180°)
<Р = <А = 70° (св-во параллелограмма - противоположные углы равны)
<NKA = <KNP = 65° (н.л. при NP//AK и секущей NK)
<NKP = <K - <NKA = 110° - 65° = 45°
ответ: <А = <Р = 70° ; <К = <N = 110° ; <NKA = 65° ; <NKP = 45°
ответ: Н = √4,5 .
Объяснение:
S сф = 4πR² ; 1/2 S сф =27π ; 2πR² = 27π ; R² = 27π/ 2π = 13,5 ;
R сф = √13,5 ;
шуканий циліндр має певну висоту Н і радіус основи R₁ . Якщо твірна
циліндра АА₁ , то АА₁ = Н і R² = R₁² + H² ; R₁² = R² - H² = 13,5 - H² ;
Об"єм циліндра V = πR₁²H = π ( 13,5 - H²)*H = 13,5πH - πH³ ;
для зручності позначимо Н = х , тоді
V ( x ) = 13,5πx - πx³ ; xЄ [ 0 ; √13,5 ] ;
дослідимо функцію V ( x ) :
V '( x ) = 13,5π - 3πx² = 3π (4,5 - x² ) ;
V '( x ) = 0 ; 3π (4,5 - x² ) = 0 ; > x² = 4,5 ; x = √4,5 ( x > 0 ) .
V '( 1 ) > 0 ; V '( 3 ) < 0 ; тому х = Н = √4,5 - максимум .
отже , висота найбільшоб"ємного впис . циліндра Н = √4,5 .