Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника то такие треугольники равны. Рассмотрим треугольники АВС и А1В1С1,у которых АВ=А1В1,АС=А1С1, углы А=углу А1.Докажем что эти треугольники равны Так как угол А=углу А1,то треугольник АВС можно наложить на треугольник А1В1С1 так,что вершина А совместится с вершиной А1, а стороны АВ и АС наложаться на лучи А1В1 и А1С1 Поскольку АВ= совместится со стороной А1В1,а сторона АС со стороной А1С1 ,в частности совместятся точки В и В1,С и С1.Следовательно совместятся стороны ВС и В1С1.И так треугольники совместятся и поэтому они равны.Теорема доказана!
Рассмотрим цилиндр сверху и увидим круг, где осевое сечение - это диаметр круга, а другое параллельно ему. Рассмотрим треугольник, образованный этим сечением (обозначим длину за а) и двумя радиусами. Мы знаем также его высоту - половина радиуса. По теореме Пифагора: r² = (a/2)² + (r/2)² = a²/4 + r²/4 a²/4 = 3r²/4 a² = 3r² a = √3r Теперь возвращаемся к третьему измерению, рассматриваем весь цилиндр. Пусть его высота h, тогда площадь этого сечения будет: S = ah = √3rh А площадь осевого сечения (назовём S0): S0 = 2r*h Значит rh = S/√3 И S0 = 2*S/√3
Проведем диагональ. Диагональ является общей стороной для отмеченных треугольников, а их углы при этой общей стороне соответственно равны друг другу так как накрестлежащие при параллельных прямых, следовательно эти треугольники равны. Из равенства треугольников следует равенство соответственых сторон, одни из которых наши параллельные стороны ЧТД