1. Вершин получилось 5.
2. Периметр равен 45 см.
Объяснение:
1.
Так как стороны BC и DE равны и были соединены между собой, то две вершины треугольника были как бы поглощены двумя вершинами четырехугольника, то есть количество вершин будет 4 + 3 - 2, где первое слагаемое - количество вершин четырехугольника, второе - кол-во вершин треугольника и третье вычитаемое - количество пар вершин, которые соединились между собой.
2.
Так как по равным между собой BC и DE мы соединили две фигуры, то данный получившийся отрезок не будет относится к периметру получившегося многоугольника. Оставшиеся стороны узнаем, прибавляя по 2, 3, 4, 5, 6 к числу 5, так как BC = DE. Каждая сумма будет означать длину стороны многоугольника. Складываем получившиеся суммы и получаем периметр получившегося многоугольника.
Около окружности радиуса 4√3 см описан правильный треугольник .На его высоте как на стороне построен правильный шестиугольник , в который вписана другая окружность. Найдите ее радиус.
Объяснение:
Обозначим радиус вписанной в треугольник окружности r₃=4√3 см. Найдем 1)сторону правильного треугольника ;2) и его высоту :
a₃ = 2r √3 , a₃ = 2*4√3*√3=24 (см). Тогда половина стороны 12 см.
По т. Пифагора высота правильного треугольника
h₃=√(24²-12²)=12√3 (см) ⇒ по условию это сторона правильного шестиугольника а=12√3 см.
Найдем радиус вписанной окружности в правильный шестиугольник
r=(а√3)/2 , r=( 12√3* √3)/2 =18 (см)
Примечание Высота в правильном треугольнике является медианой.
Привет правельный ответ 8 по двум сторонам угла между ними