Пусть abc - произвольный треугольник. проведем через вершину b прямую, параллельную прямой ac. отметим на ней точку d так, чтобы точки a и d лежали по разные стороны от прямой bc.углы dbc и acb равны как внутренние накрест лежащие, образованные секущей bc с параллельными прямыми ac и bd. поэтому сумма углов треугольника при вершинах b и с равна углу abd.сумма всех трех углов треугольника равна сумме углов abd и bac. так как эти углы внутренние односторонние для параллельных ac и bd при секущей ab, то их сумма равна 180°. что и требовалось доказать.
Дано: равнобедренная трапеция ABCD, P - середина AB, F - середина CD, BC = 4см, AD = 8см, периметр трапеции OPBC = 13см. Найти: периметр трапеции AOFD. Решение. 1) PF - средняя линия трапеции → PO = BC/2 = 4см/2 = 2см, OF = AD/2 = 8см/2 = 4см 2) Периметр OPBC(13см) = OP(2см)+PB+BC(4см)+CO → PB+CO = 13см-6см = 7см 3) PB=FD, т.к. средняя линия PF соединяет середины боковых сторон в равнобедренной трапеции; CO=AO, т.к. средняя линия PF делит диагональ AC на равные отрезки по теореме Фалеса → Периметр AOFD = (FD+AO)(7см)+OF(4см)+DA(8см) = 19см ответ: 19см.