ΔАВС - равнобедренный , АС - основание , ∠В - противолежащий основанию. По свойствам равнобедренного треугольника: АВ=ВС - боковые стороны равны ∠А=∠С , т.к. у равнобедренного треугольника углы при основании равны. Биссектриса АН делит ∠А пополам ⇒ ∠ВАH=∠HAC
ΔАНС : АН=АС - по условию ⇒ равнобедренный. ∠НАС= х , ∠Н=∠С =2х - т.к. углы при основании . Сумма углов треугольника = 180° х+ 2х+2х=180 5х= 180 х=180/5 = 36° - ∠НАС ∠Н= ∠С= 36×2= 72 ° ⇒ Углы при основании ΔАВС ∠А=∠С= 72° ∠В= 180° - 72°×2= 180° - 144°=36° ответ: ∠В= 36°.
Расстояние между двумя точками вычисляются по формуле АВ=√(х2-х1)²+(у2-у1)². НF=√(6-1)²+(3-3)²=√25=5. FQ=√(6-1)²+(3-8)²=√50=5√2. НQ=√(1-1)²+(8-3)²=√25=5. ΔHFQ - равнобедренный HQ=HF=5. Можно сразу определить вид данного треугольника: прямоугольный равнобедренный, значит острые углы по 45°. ответ:45 °. Но можно по формуле косинусов определить острый угол С. FQ²=HF²+HQ²-2·HF·HQ·cosH=25+25-2·5·5·cosH=50. 50-50·cosH=50. 50(1-cosH)=50. 1-cosH=50/50. 1-cosH=1. cosH=0. ∠H=90°, значит два острых угла равны по 45°. ответ: ∠F=45°.