Заметим, что если провести из любой вершины высоту, то она будет и биссектрисой и медианой одновременно. Также точка пересечения медиан будет совпадать с точкой пересечения биссектрис и высот (так как в правильном треугольнике медианы биссектрисы и высоты, проведенные из одной вершины совпадают). А медианы делятся в точке пересечения в соотношении 2 к 1, начиная от вершины. Теперь отрезок медианы от точки пресечения медиан до вершины будет радиусом описанной окружности. А отрезок медианы от точки пересечения медиан до основания (стороны, к которой проведен) будет радиусом вписанной окружности. Значит половина длины радиуса описанной окружности равна длине радиуса вписанной окружности. То есть 8:2=4 см.
Для равенства этих треугольников не нужны углы.
Рассмотрим треугольники АКN и ВКN:
КN - общая
АК=КВ и АN=ВN - по условию
Следовательно, треугольники равны по трем сторонам.
Может нужно равенство треугольников АКВ и АNВ?
Так как АК=ВК, то треуг АВК равнобедренный. Значит у него углы при основании равны: угол 1 = углу 3
Аналогично, AN=BN, значит угол 2 равен углу 2.
угол 1=углу 2 по условию, значит угол1=углу2=углу3=углу4.
Рассмотрим треугольники АВК и АВN:
АВ - общая сторона
угол1=углу 2, угол3=углу 4
Треугольники равны по стороне и прилежащим к ней углам.