АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Смотри рисунок. Пусть угол OCK=2х, тогда угол OCB равен х. Их сумма 180градусов, т.к. они смежные. х+2х=180 3х=180 х=60 - это угол OCB. Рассмотрим треугольник ОВС - он прямоугольный (угол ВОС=90градусов, угол ОСВ = 60 градусов) значит угол ОВС = 180-90-60=30 градусов Запишем для угла OCB: cos 60 = BC/AC поскольку по условию AC=100, имеем cos 60= BC/100⇒ BC = 100× cos 60 cos 60 - это табличная величина = 1/2 BC= 100×1/2=50 Запишем для угла OBC: sin 30 = OC/BC ⇒ OC= BC × sin 30= 50 × 1/2=25 sin 30 - это табличная величина = 1/ 2 ответ: OC=25
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.