Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
ответ: 2√3 см
6 сторон
Объяснение:
АВ - сторона правильного многоугольника, О - его центр.
Тогда в ΔОАВ
ОА = ОВ = R = 2√3 cм- радиус описанной окружности.
Проведем ОН ⊥ АВ. ОН - высота, биссектриса и медиана равнобедренного треугольника ОАВ, значит
ОН = r = 3 см.
ΔОАН: ∠ОНА = 90°,
cos α = r / R = 3 / (2√3) = 3√3 / 6 = √3/2
Значит, α = 30°, а ∠АОВ = 2α = 60° (так как ОН биссектриса угла АОВ).
Итак, центральный угол правильного многоугольника равен 60°, полный угол равен 360°, тогда количество сторон многоугольника:
n = 360° / 60° = 6
Это правильный шестиугольник.
ΔАОВ равнобедренный с углом 60° при вершине, значит он равносторонний, тогда
АВ = R = 2√3 см