Таблица точек для графика приложена Из графика видно, что функция возрастает от (-∞;-2] и от [3;+∞) Это пока примерное решение, найдём точное производная функции f(x) = 2x³ - 3x² - 36x + 11 f'(x) = 3*2x² - 2*3x - 36 = 6x² - 6x - 36 = 6(x² - x - 6) Найдём нули производной для определения точек экстремумов функции f'(x) = 0 6(x² - x - 6) = 0 x² - x - 6 = 0 Дискриминант D = (-1)² - 4*1*(-6) = 1 + 24 = 25 = 5² Корни x₁ = (1 - 5)/2 = -2 x₂ = (1 + 5)/2 = 3 Т.е. точки, определённые по графику - точны, и ответ функция возрастает при x ∈ (-∞;-2] и x ∈ [3;+∞)
85+5√119см²
Объяснение:
Дано:
ABCA1B1C1- прямая призма.
∆А1В1С1- прямоугольный.
А1В1=5см
А1С1=12см.
Sбок=?
Решение.
По теореме Пифагора найдем второй катет ∆А1В1С1
С1В1²=А1С1²-А1В1²=12²-5²=144-25=119 см
С1В1=√119 см
√25>√119
5>√119 значит
АВА1В1- является квадрат.
А1В1=В1В=АВ=АА1=5см.
ВВ1=5см высота призмы.
Формула нахождения площади боковой поверхности призмы.
Sбок=Росн*h, где Росн- периметр основания, h=BB1 - высота.
Росн=А1В1+В1С1+А1С1=12+5+√119=
=17+√119 см периметр треугольника.
Sбок=(17+√119)*5=85+5√119 см² площадь боковой поверхности призмы.