номер 604
а)(x+3y)\2=x\2x*3y+(3y)\2=x\2+6xy+9y\2( если что x\2 это степень)
б)m+5ab)\2=m\2+2m*5ab+(5ab)\2=m\2+20abm+25a\2 b\2
в)(7+a\2)\2=49+14a\2+a\4=a\4+14a\2+49
г)(2x+y\3)\2=(2x)\2+2*2xy\3+(y\3)\2
) (3c\2+y\2)=(3c\2)\2+2*3c\2y+y\2=9c\4+6c\2y+y\2
д)(5x\2-y\3)\3=(5x\2)\2-2*5x\2 y\3+(y\3)\2=25x\4-20x\2y\3+y\6
Номер 751
извини Г не очень поняла:(((
-z\3-p\3=-(z\3+p\3)= -(z+p)*(z\2-pz+p\2)
д) 0,008+y\3z\9= дробь 1|125+y\3z\9=( 1|5+yz\3)*(1|25-1|5yz\3+y\2z\6)
ну или можно записать ещё так:
(0,2+yz\3)*(0,04-0,2yz\3+y\2z\6)
Я надеюсь,что )
сори если есть ошибки
ответ: S тр. ABCD = 300 ед.кв.
Объяснение: Проведём из т.A к большему основанию BC высоту AM.
Отрезок DC не только боковая сторона прямоугольной трапеции ABCD, но и высота этой трапеции.
DC ⊥ BC; AM ⊥ BC ⇒ DC ║ AM ⇒ CD = AM = 15 ед.
Т.к. AM - высота ⇒ ΔAMB - прямоугольный.
Найдём катет MB по т.Пифагора:
MB = √(AB² - AM²) = √(25² - 15²) = √(625 - 225) = √400 = 20 ед.
CM = AD, т.к. AM отсекает от трапеции ABCD прямоугольник DAMC.
Пусть x ед. меньшее основание трапеции (AD), тогда (x+20) ед. равно большее основание трапеции (BC). AB+BC+CD+AD=80 ед.
25 + (x + 20) + 15 + x = 80; 60 + 2x = 80; 2x = 20; x = 10
Если меньшее основание AD прямоугольной трапеции ABCD составляет 10 ед. ⇒ большее основание BC = 30 ед.
Формула площади нашей прямоугольной трапеции : (AD+BC)/2*AM.
⇒ S тр. ABCD = (10 + 30)/2 * 15 = 40/2 * 15 = 20 * 15 = 300 ед.кв.