Дано: Треугольник АВС. АВ=ВСб М∈BD, K∈AC. MK║AB. <ABC=126°,<BAC=27°.
Найти <MKD, <KMD и <MDK.
Решение.
Треугольник АВС равнобедренный, следовательно BD - биссектриса, высота и медиана треугольника. <BAC=<BCA=27°, Значит
<ABD = (1/2)*(<ABC) = 126/2 = 63°. <BDA=<MDK = 90°.
MK параллельна АВ, значит <MKD=<BAC=27°, а <KMD=<ABD=63°, как соответственные углы при параллельных прямых АВ и МК и секущих AD и BD соответственно.
ответ: <MKD=27°, <KMD=63°, <MDK=90°.
Найдите неизвестные углы параллелограмма ABCD если:
а) угол B= 130°
б) угол A + угол C = 140°
ответ: а) ∠ B = ∠ D =130°
∠ A = ∠ C = °50
- - - - - - - - - - - - - - - -
б ) ∠ A = ∠ C = ( ∠A + ∠ C) / 2 =140°/2 =70° ;
∠ B = ∠ D =180° -∠A =180° - 70° =110 °
Объяснение: Смежные углы параллелограмма в паре дают 180°, а противоположные его углы равны. Таким образом, зная любой один угол параллелограмма, можно найти значения всех остальных углов. α=180°- β