1). Опускаем высоты из вершин малого основания на большое. Легко видеть, что прямоугольные треугольники имеют углы по 45 градусов, то есть равнобедренные. Поэтому высота трапеции равна (7 - 3)/2 = 2, а площадь 2*(7 + 3)/2 = 10.
2). Диагонали ромба делят его на 4 равных прямоугольных треугольника с гипотенузой 13 и одним из катетов 10/2 = 5. Отсюда второй катет 12, диагональ 24, а площадь равна половине произведения диагоналей, то есть 10*24/2 = 120.
3). Считаем трапецию равнобедренной. Тогда сумма оснований равна сумме боковых сторон, то есть средняя линяя равна боковой стороне. Обозначим её m, а высоту h. Имеем h = m*sin(30) = m/2; S = m*h = m^2/2; m^2 = 2*S = 625; m = 25;
4) 0,21^2 = 0,0441; (можно и так (21/100)^2 = 441/10000 = 0,0441)
Дано: ΔABE - равнобедренный, АВ=ВЕ= 17 см, АЕ= 16 см, АЕВ∈α, CB⟂α, C∉α, СВ= 8 см.
Найти: расстояние от точки C до стороны треугольника AE
Решение.
1) Проведём высоту ВН в равнобедренном треугольнике АВЕ => BH⟂AE
Так как BH⟂AE и по условию ВС⟂α, по теореме о трёх перпендикулярах следует, что наклонная СН⟂АЕ. Наклонная СН и есть расстоянием от точки С до стороны АЕ ΔABE.
2) В треугольнике ЕСВ (∠ЕВС=90°, т.к. СВ⟂α) по т.Пифагора находим гипотенузу ЕС:
ЕС²= ЕВ²+ВС²;
ЕС²= 17²+8²;
ЕС²= 289+64;
ЕС²= 353
3) Поскольку ΔABE - равнобедренный, а ВН - высота, проведённая к основанию АС, то ВН также является и медианой ΔАВЕ => АН=НЕ= ½АЕ= 16 : 2 = 8 см.
4) В ΔCHE (∠CHE=90°) по т.Пифагора находим СН:
СН²= ЕС² – НЕ²;
СН²= 353–8²;
СН²= 353–64;
СН²= 289;
СН= 17 см (–17 быть не может)
Расстояние от точки C до стороны треугольника AE равно 17 см.
ответ: 17 см.