По теореме: Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на ее внешнюю часть равно произведению другой секущей на ее внешнюю часть. (как следствие теоремы о касательной и секущей из одной точки).
Для меньшей окружности
СА•СК=СВ•СР, откуда
СА:СВ=СК:СР
Для большей окружности
СЕ•СВ=СМ•СА, откуда
СМ:СЕ=СА:СВ. ⇒
СК:СР=СМ:СЕ ⇒СК:СМ=СР:СЕ
Второй признак подобия треугольников. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то треугольники подобны.
Так как треугольник равнобедренный, то его две стороны равны. Поэтому стороны треугольника 4; 8; 8 или стороны треугольника 4; 4; 8. Но есть неравенство треугольника, которое должно выполняться: каждая сторона треугольника меньше суммы двух других сторон. В случае длин сторон 4; 4; 8 это неравенство не выполняется, так как одна из сторон, длиной 8, равна сумме двух других сторон 8=4+4. Поэтому длины сторон 4, 8, 8. Для такого треугольника неравенство треугольника выполняется. Проверим: 4<8+8 8<4+8 ответ: длина третьей стороны 8.
По теореме: Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на ее внешнюю часть равно произведению другой секущей на ее внешнюю часть. (как следствие теоремы о касательной и секущей из одной точки).
Для меньшей окружности
СА•СК=СВ•СР, откуда
СА:СВ=СК:СР
Для большей окружности
СЕ•СВ=СМ•СА, откуда
СМ:СЕ=СА:СВ. ⇒
СК:СР=СМ:СЕ ⇒СК:СМ=СР:СЕ
Второй признак подобия треугольников. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то треугольники подобны.
Из подобия ∆ СКР и Δ СМЕ следует отношение
СК:СМ=РК:ЕМ
СК:12=6:9⇒ СК=8 см.
и
СР:СЕ=КР:МЕ
⇒ СР=10 см