1. ΔАВС и ΔАDС равны по второму признаку равенства треугольников. в них АС- общая. а углы, прилежащие к этой стороне, равны по условию. Поэтому АВ=DС, ВС=АD, значит, по признаку параллелограмма четырехугольник АВСD - параллелограмм. Доказано.
5. BD- общая для ΔАВD и ΔDСВ, стороны ВС и АD -равны по условию, углы между ВD и ВС и ВD и DА равны по условию. значит, ΔАВD и ΔDСВ равны по первому признаку равенства треугольников. а ВС и АD равны и параллельны, т.к. ∠СВD=∠АDВ, а это внутренние накрест лежащие при ВС и АD и секущей ВD, по признаку четырехугольник АВСD - параллелограмм. Доказано.
7. Из равенства этих треугольников вытекает равенство сторон АВ и С D , кроме того, углы ВАО и СОD равны, но это внутренние накрест лежащие при прямых АВ и СD, секущей АС, значит, прямые АВ ║ СD.
По признаку четырехугольник АВСD - параллелограмм. Доказано.
Решение умных людей ) не мое , но все же 1. строим тр-к авс с углами альфа (вершина а) и бета (вершина с) при основании. 2. строим биссектрисы углов а и с. 3. радиусом св с центром в точке с проводим полуокружность с пересечением стороны ас в точке d. дугу dв откладываем вправо от точки в и еще откладываем половину дуги угла бета. получили точку м. угол dсм равен 2,5 бета. 4. радиусом сm, с центром в т. а проводим дугу угла альфа. 5. измеряем дугу половины угла альфа. 6. эту дугу откладываем по дуге угла мсb от точки м в сторону точки в. получили точку n. 7. угол acn = 2,5 бета - 0,5 альфа.
1. ΔАВС и ΔАDС равны по второму признаку равенства треугольников. в них АС- общая. а углы, прилежащие к этой стороне, равны по условию. Поэтому АВ=DС, ВС=АD, значит, по признаку параллелограмма четырехугольник АВСD - параллелограмм. Доказано.
5. BD- общая для ΔАВD и ΔDСВ, стороны ВС и АD -равны по условию, углы между ВD и ВС и ВD и DА равны по условию. значит, ΔАВD и ΔDСВ равны по первому признаку равенства треугольников. а ВС и АD равны и параллельны, т.к. ∠СВD=∠АDВ, а это внутренние накрест лежащие при ВС и АD и секущей ВD, по признаку четырехугольник АВСD - параллелограмм. Доказано.
7. Из равенства этих треугольников вытекает равенство сторон АВ и С D , кроме того, углы ВАО и СОD равны, но это внутренние накрест лежащие при прямых АВ и СD, секущей АС, значит, прямые АВ ║ СD.
По признаку четырехугольник АВСD - параллелограмм. Доказано.