1. 1) Угол при вершине равен 180-2×75=180-150=30 2) Проведём из угла при основании высоту к боковой стороне. По свойству равнобедренного треугольника она будет и медианой. Рассмотрим полученный прямоугольный треугольник. По свойству прямоугольного треугольника, катет, лежащий против угла в 30 градусов равен половине гипотенузы. По теореме Пифагора имеем: х²=(½х)²+2² х²-¼х²=4 ¾х²=4 х²=4×4/3 х=4/кореньиз3 Боковая сторона равна 4/кореньиз3, а высота к ней 2/кореньиз3. 3) Площадь треугольника S=½a×h=½×2/кореньиз3 × 4/кореньиз3 =½×8/3=4/3 (см²) 2. Пусть одна часть будет а, тогда одна сторона будет 5а, другая 7а. Р=2×(5а+7а)=144. 2×12а=144 24а=144 а=6 Тогда одна сторона равна 6×5=30, а другая 6×7=42. Тогда S=30×42=1260 3. S=a×h 12×На=36 На=3 (см) 9×Нb=36 Нb=4
Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
2) Проведём из угла при основании высоту к боковой стороне. По свойству равнобедренного треугольника она будет и медианой. Рассмотрим полученный прямоугольный треугольник. По свойству прямоугольного треугольника, катет, лежащий против угла в 30 градусов равен половине гипотенузы. По теореме Пифагора имеем:
х²=(½х)²+2²
х²-¼х²=4
¾х²=4
х²=4×4/3
х=4/кореньиз3
Боковая сторона равна 4/кореньиз3, а высота к ней 2/кореньиз3.
3) Площадь треугольника S=½a×h=½×2/кореньиз3 × 4/кореньиз3 =½×8/3=4/3 (см²)
2. Пусть одна часть будет а, тогда одна сторона будет 5а, другая 7а. Р=2×(5а+7а)=144. 2×12а=144
24а=144
а=6
Тогда одна сторона равна 6×5=30, а другая 6×7=42. Тогда S=30×42=1260
3. S=a×h
12×На=36
На=3 (см)
9×Нb=36
Нb=4