2часть прямой, состоящая из данной точки и всех точек, лежащих по одну сторону от неё
3 точка отсчета, начало луча
4 бесконечные промежутки (полупрямые) числовой прямой
5 называется начальной точкой
6 Геометрическая фигура состоящая из двух точек А и В и всех точек прямой АВ, лежащих между ними, называется отрезком АВ
7 двумя точками , которые его ограничивают
8 отрезок можно разделить на конечное кол-во отрезков , их длину можно складывать
9 AВ , CD
AB=CD
10 находится на равном расстоянии от обоих концов данного отрезка
Обозначают так: точка отсчета, начало луча, к примеру А, вторая буква - это ближе к концу графического изображения луча, к примеру В. Луч АВ.
2.Углом называется часть плоскости ограниченная двумя лучами.
Сами лучи называются сторонами угла, а общая точка, из которой лучи выходят, называются вершиной угла.
3.Градусная мера, которого 180 градусов.
1) 0, 1, бесконечность
2) прямая, исходящая из одной точки, обозначение - маленькие буквы греческого алфавита
3) два луча, выходящих из одной точки
4) имеющие равные стороны и углы
5) по линейке (или другим подобным при
6) делящая отрезок на 2 равные части
7) транспортиром (или другим подобным при
8) луч, делящий угол на две равные части
линейка, циркуль, рулетка
9) Градус обозначается °. Один оборот равен 360°. В прямом угле, таким образом, 90°, в развёрнутом — 180°.
1 градус = 0,017453293 радиан
Объяснение:
R≅5,04
H≅5,04
Объяснение:
Объём цилиндра :
(1) V = πR²H,
где R - радиус цилиндра, H - высота цилиндра.
Площадь полной поверхности цилиндра:
(2) S = πR² + 2πRH
Выразим из формулы (1) высоту цилиндра и подставим значение в формулу (2):
Найдём минимум этой функции по переменной R. Для этого вычислим производную и определим критические точки.
S' = 0,
Если R = 0, то производная не существует.
R≅ 5.04
Отметим эти значения на координатной прямой и oпределим знак производной на трёх полученных числовых интервалах. (Cм.рис)
Известно, что в точке минимумa производная меняет знак с минусa на плюс. Соответственно, наименьшее количество материала можно получить, если радиус основания цилиндра R=5,04
Вычислим соответствующую высоту цилиндра: