Обозначим прямоугольник АВСД. Диагональ АС. На неё из вершины В опущен перпендикуляр ВК, и по условию АК=9, КС=16. ВК это общая высота в прямоугольных треугольниках АВК и СВК. Отсюда по теореме Пифагора АВ квадрат-АК квадрат=ВС квадрат-КС квадрат. Или АВ квадрат-81=ВС квадрат-256. Отсюда ВС квадрат=АВ квадрат+175. В треугольнике АВС также АВ квадрат+ ВС квадрат= АС квадрат. Или АВ квадрат+ВС квадрат=(9+16)квадрат. АВ квадрат+ ВС квадрат=625. Подставим сюда ранее найденное выражение для ВС квадрат и получим АВ квадрат+(АВ квадрат+175)=625. Отсюда АВ=15. ВК=корень из(АВ квадрат-АК квадрат)=корень из(225-81)=12. Искомый тангенс угла ВАК, tg=ВК/АК=12/9=4/3.
Обозначим прямоугольник АВСД. Диагональ АС. На неё из вершины В опущен перпендикуляр ВК, и по условию АК=9, КС=16. ВК это общая высота в прямоугольных треугольниках АВК и СВК. Отсюда по теореме Пифагора АВ квадрат-АК квадрат=ВС квадрат-КС квадрат. Или АВ квадрат-81=ВС квадрат-256. Отсюда ВС квадрат=АВ квадрат+175. В треугольнике АВС также АВ квадрат+ ВС квадрат= АС квадрат. Или АВ квадрат+ВС квадрат=(9+16)квадрат. АВ квадрат+ ВС квадрат=625. Подставим сюда ранее найденное выражение для ВС квадрат и получим АВ квадрат+(АВ квадрат+175)=625. Отсюда АВ=15. ВК=корень из(АВ квадрат-АК квадрат)=корень из(225-81)=12. Искомый тангенс угла ВАК, tg=ВК/АК=12/9=4/3.
1.
√(15²-9²)=√(225-81)=√144=12 см длина прямоугольника
2(9+12)=42 см периметр прямоугольника
2.
30:2=15 см половина основания
√(20²-15²=√(400-225)=√175=5√7 см боковая сторона
3.
2:2=1 см и 8:2=4 см половины диагоналей ромба
√(1²+4²)=√(1+16)=√17 см сторона ромба; у ромба все стороны равны.