Объяснение:
Окружность с центром в точке А и радиусом 3 см имеет с прямой BС две общие точки. Не верно.
Поскольку прямая расстояние от центра окружности А до стороны ВС, больше радиуса окружности r<AC, r<AB, то прямая и окружность не имеют общих точек.
Окружность с центром в точке А и радиусом 8 см имеет с прямой ВС одну общую точку. Верно.
Если расстояние от центра окружности до прямой равно ее радиусу, то прямая и окружность имеют одну общую точку касания.
Окружность с центром в точке В и радиусом 17 см имеет с прямой АС две общие точки. Не верно
Поскольку радиус окружность равен гипотенузе r=AB, то А∈окружности. Остальные точки АС не имеют с окружностью общих точек, поскольку меньше радиуса окружности.
Окружность с центром в точке В и радиусом 9 см имеет с прямой AС одну общую точку. НЕ ВЕРНО
Поскольку расстояние от точки В до АС от 15 см до 17 см, то окружность с АС не имеет общих точек.
В приложении есть рисунки для демонстрации утверждений.
Подробнее - на -
Чертёж смотрите во вложении.
Дано:
а - прямая.
АL - перпендикуляр от точки А до прямой а.
АМ - наклонная от точки А до прямой а.
∠ALM = 90°.
АМ+AL = 11 см.
Разность длин наклонной и перпендикуляра = 1 см.
Найти:
Расстояние от точки А до прямой а = ?
О каком расстоянии идёт речь в задании? Дело в том, что расстояние от точки до прямой - длина перпендикуляра, проведённого из этой точки к этой прямой. Поэтому, мы будем искать длину перпендикуляра AL.Так как АМ - наклонная, то она больше перпендикуляра AL (это не сложно доказать, если рассмотреть получившиеся прямоугольный ΔALM). Итак, поэтому, AM-AL = 1 см.Введём переменные. Пусть АМ = х, а AL = y. Составим систему линейных уравнений и решим её методом подстановки - AL = y = 5 см.ответ: 5 см.