10) Угол ABC = 50°, он вписан в окружность и опирается на дугу AC, содержащую точку D, следовательно дуга AC = 2 * угол ABC = 100°. Зная, что градусная величина окружности = 360°, значит дуга AC, содержащая точку B равна 360 - 100 = 260°. Угол ADC как раз и опирается на эту дугу и равен половине ее градусной величине = 260 / 2 = 130°
ответ: 130°
12) Так как хорда AC проходит через центр окружности, значит что AC - диаметр данной окружности. И он делит окружность пополам. То есть дуги AB и BC равны половине окружности. AB + BC = 360 / 2 = 180
Рассмотрим треугольник ABC, он равнобедренный так как AB = BC, следовательно по свойству равнобедренного треугольника его углы при основании равны
BAC = CBA. Так как данные углы вписаны в окружность и опираются соответственно на дуги BC и AB, то значит дуги также равны
А их сумма равна 180°. Тогда дуга AB = дуга BC = 90°
ответ: 90°; 90°;
16) AB - диаметр, так как проходит через центр окружности. Тогда дуга DC равна 180° - 50° - 70° = 60°. Центральный угол DOC опирается на эту дугу и равен ей DOC = 60°
Рассмотрим треугольник OCD, две его стороны - радиусы окружности, то есть они равны. По свойству равнобедренного треугольника углы при основании равны. Угол напротив основания равен 60. Сумма других двух равных 120. То есть все углы в треугольнике равны 60°.Треугольник равносторонний и все его стороны, включая DC равны радиусу окружности = 15 см
Вот такое нахальное решение. ну уж простите : )пусть катеты a и b, гипотенуза с. я строю квадрат со сторонами (a + b), и дальше обхожу все 4 стороны по часовой стрелке, откладывая отрезок а от вершины. (пояснение.построенный со стороной (a + b) с вершинами аbcd, а - "левая нижняя" вершина. от а вверх - вдоль ав, откладывается а, потом от в вправо - вдоль вс откладывается а, потом от с вниз, вдоль cd, откладывается а, и от d вдоль da откладывается а.)все эти точки соединяются.получился квадрат со стороной с, вписанный в квадрат со стороной (a+b).ясно, что центры этих квадратов . это автоматически доказывает то, что надо в . (если не ясно, постройте там пару треугольников из диагоналей обоих квадратов и отрезков длины а и докажите их равенство. на самом деле не надо ничего доказывать - эта фигура из двух квадратов переходит сама в себя при повороте вокруг центра большого квадрата на 90 градусов. поэтому центр "вписанного" квадрата совпадает с центром большого, то есть лежит на биссктрисе прямого угла большого квадрата. ну, и биссектрисе прямого угла исходного треугольника, само собой - это одно и то же. этих треугольников там даже четыре, а не один : ), можно любой выбрать за исходный.)
Объяснение:
10) Угол ABC = 50°, он вписан в окружность и опирается на дугу AC, содержащую точку D, следовательно дуга AC = 2 * угол ABC = 100°. Зная, что градусная величина окружности = 360°, значит дуга AC, содержащая точку B равна 360 - 100 = 260°. Угол ADC как раз и опирается на эту дугу и равен половине ее градусной величине = 260 / 2 = 130°
ответ: 130°
12) Так как хорда AC проходит через центр окружности, значит что AC - диаметр данной окружности. И он делит окружность пополам. То есть дуги AB и BC равны половине окружности. AB + BC = 360 / 2 = 180
Рассмотрим треугольник ABC, он равнобедренный так как AB = BC, следовательно по свойству равнобедренного треугольника его углы при основании равны
BAC = CBA. Так как данные углы вписаны в окружность и опираются соответственно на дуги BC и AB, то значит дуги также равны
А их сумма равна 180°. Тогда дуга AB = дуга BC = 90°
ответ: 90°; 90°;
16) AB - диаметр, так как проходит через центр окружности. Тогда дуга DC равна 180° - 50° - 70° = 60°. Центральный угол DOC опирается на эту дугу и равен ей DOC = 60°
Рассмотрим треугольник OCD, две его стороны - радиусы окружности, то есть они равны. По свойству равнобедренного треугольника углы при основании равны. Угол напротив основания равен 60. Сумма других двух равных 120. То есть все углы в треугольнике равны 60°.Треугольник равносторонний и все его стороны, включая DC равны радиусу окружности = 15 см
ответ: 15 см