Четырехугольник, соединяющий середины сторон - параллелограмм, его стороны параллельны диагоналям и равны их половине. И его площадь равна половине площади четырехугольника. Поскольку диагонали равны, этот четырехугольник - ромб. Поэтому отрезки, соединяющие середины противоположных сторон четырехугольника, одновременно - диагонали ромба (то есть они 1) делятся пополам, как в любом параллелограмме 2) взаимно перпендикулярны, это - только в ромбе). Площадь ромба равна половине произведения диагоналей, следовательно площадь всего четырехугольника равна произведению отрезков, соединяющих противоположные стороны.
В правильном треугольнике высоты, биссектрисы и медианы, опущенные из одной вершины совпадают и равны между собой, то есть АА1=ВВ1=СС1 Медианы точкой пересечения делятся в отношении 2:1 ⇒ ВО=АО=СО=2х, ОА1=ОВ1=ОС1=х; По условию K, M и N – середины отрезков АО, ВО и СО соответственно ⇒ МО=КО=NO=АО/2=2х/2=х ⇒МО=КО=NO=ОА1=ОВ1=ОС1=х ⇒A1MC1KB1N=правильный шестиугольник В равностороннем треугольнике высота=а√3/2 BB1=BO+OB1=2x+x=3x BB1=а√3/2 а√3/2=3x x=а√3/6 OB1=x OC=2x B1C²=OC²-OB1²=4x²-x²=3x² B1C=√3x²=x√3 В1N-медиана для треугольника ОСВ1 В1N²=(2( ОВ1²+В1С²)-ОС²)/4=( 2(x²+3x²)-4x² )/4=(8x²-4x²)/4=4x²/4=x² В1N√x²=x=а√3/6 P=6x=6*а√3/6=a√3 отв: a√3
Дано: а=10 см, d1=16 см.
Нaйти: S
Решение: Диагонали ромба пересекаются, делятся точкой пересечения пополам, и взаимно перпендикулярны.
Отсюда по теореме Пифагора вторая диагональ равна
d2=2*(корень(a^2-(d1/2)^2))=2*(корень(10^2-(16/2)^2))=12 см
Площадь ромба равна половине произведения диагоналей
S=(d1)*(d2)/2=16*12/2=96 кв.см
Объяснение: