Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.
<Х=118°
Объяснение:
∆ABD- прямоугольный треугольник, т.к. <АВD вписанный угол опирается на дугуАD=180°
Сумма острых углов в прямоугольном треугольнике равна 90°
<DAB+<BDA=90°
<DAB=90°-<BDA=90°-28°=62°
<DAB- вписанный угол опирается на дугуВD(меньшая)
Тогда дугаВD(меньшая)=2*<DAB=2*62°=124°
Вся окружность составляет полный угол который равен 360°
дугаВD(меньшая)+дугаВD(боль)=360°
ДугаВD(боль)=360°-дугаВD(меньшая)=
=360°-124°=236°
<ВСD- вписанный угол опирается на дугуВD(боль)
<ВCD=дугаВD(боль):2=236°:2=118°
Обозначение:
дугаВD(боль)- большая дугаBD