1)Дано:тр.АВС,угол С=90 гр,СД-высота,угол АСД=4угламДСВ.
Найти:угол А,угол В.
Решение:
1)пусть угол ДСВ=х гр,тогда угол АСД=4х гр.
х+4х=90
5х=90
х=18
Значит,угол ДСВ=18 гр,угол АСД=72 гр.
2)угол А=90-72=18(гр);угол В=90-18=72(гр).
2)
треугольник АМВ прямоугольный,угол М=90градуссов,угол МВА=30 градуссов,АМ=половине АВ,так как катет лежит против угла в 30 градуссов,АМ=9 см
По теореме Пифагора можем найти ВМ,АВ в квадрате= АМ в квадрате +ВМ в квадрате
ВМ= корень квадратный из АВ в квадрате минус Ам в квадрате
ВМ=9 корней из 3 см
Поскольку иное не указано, данный конус – прямой. У прямого конуса основание высоты совпадает с центром основания.
На рисунке приложения треугольник АВС– осевое сечение конуса. ∆ АВС- равнобедренный (АВ=ВС как образующие ). АС - диаметр, О - центр основания, ВО - высота конуса.
ВО⊥АС⇒ треугольник ВОС – прямоугольный, и отрезок ОН, проведенный перпендикулярно к гипотенузе ВС, является его высотой. Прямоугольный ∆ СОВ~∆ НОВ по общему углу при вершине В ⇒
∠ВСО=∠ВОН=α.
V(кон)=πR²•h/3
R=BC•cosα=n•cosα
h=BO=n•sinα
V=π•n²•cos²α•n•sinα/3=n³•cos²α•sinα/3