Ромб - это параллелограмм, у которого все стороны равны (докажите сами). То есть ромб является параллелограммом.
<AOE = <ACB (как соответственные углы при ||-ных прямых OE и BC и их секущей AC).
Тогда треугольники ACB и AOE подобны по двум углам (<A=<A, <AOE=<ACB),
тогда их стороны пропорциональны, то есть:
AC/AO = BC/EO = AB/AE. (*)
Треугольники AOB и COD равны (докажите сами), тогда
AO = CO, тогда
AC/AO = (AO+CO)/AO = 2AO/AO = 2.
Тогда из (*):
2 = BC/EO, отсюда EO = (1/2)*BC,
Но у ромба все стороны равны, то есть BC = DC, поэтому
EO = (1/2)*BC = (1/2)*DC.
Ч. т. д.
Пусть коэффициент пропорциональности равен х, (x>0), тогда высоты равны 5х/см/ и 7х/см/, если меньшая сторона у/см/, периметр 72см, полупериметр 36см, тогда большая сторона (36-у).
Т.к. площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне, (учитываем, что к большей стороне проводится меньшая диагональ, а к меньшей стороне большая диагональ), составим и решим уравнение.
5х*(36-у)=7х*у, сокращая на положительную величину х, получим
5*(36-у)=7у⇒12у=5*36; у=5*36/12=15, значит, меньшая сторона 15 см, а большая 36-15=21/см/, значит, две стороны у параллелограмма равны по 15см, а две другие по 21см, т.к. противоположные стороны параллелограмма равны. Заметим, что отношение меньшей стороны к большей равно 15/21=5/7, т.е. такое же, как и у высот.
Можно было бы решить задачу, учитывая последнее соотношение, но непременно показать, что то, что дано в условии, это не отношение сторон, а отношение высот.
ответ: стороны параллелограмма равны 15см, 21см, 15см, 21см.