Проведя перпендикуляр к меньшей стороне у нас получился прямоугольный треугольник гипотенуза которого равна корень из 21 а катеты корень из 15( по условию ) и корень из 6( длина меньшей диагонали которая является катетом треугольника ) Далее: из этого треугольника находим синус меньшего угла из этого треугольника от равен корень из 6 разделить на корень из 21 далее: Площадь находим по формуле a*b* sin( угла заключённого между ними ) таким образом перемножая все величины мы находим площадь равную 15 ответ :15
У нас получилась пирамида с апофемой А каждой грани, равной А =17, высота пирамиды неизвестна, обозначим её Н. Если наклонные (т.е. апофемы) равны, а по условию это так, то равны и их проекции на плоскость треугольника. Эти проекции представляют собой радиусы вписанной в треугольник окружности, поскольку они перпендикулярны сторонам треугольника и равны между собой. Радиус вписанной окружности r = √((p -a)(p - b)(p - c)/p) a = 25, b = 29, c = 36 полупериметр р = (25 + 29 + 36)/2 = 45 r = √(20·16·9)/45 = 8 Тогда расстояние от точки до плоскости(высота пирамиды) равна Н = √(А² - r²) = √( 17² - 8²) = 15 ответ: 15 см
Відповідь:
Пояснення: