Рассмотрим треугольник, образованный половинами диагоналей (диагонали у прямоугольника равны, поэтому и половинки равны) малой стороной. так как половины диагоналей равны, то рассматриваемый треугольник, как минимум, равнобедренный. Углу при его основании равны. Сумма углов в треугольнике 180, значит угол при основании треугольника (180-60)/2=60. как видим, три угла равны 60град. Значит, рассматриваемый треугольник равносторонний, а равностороннего треугольника стороны равны. Значит половина диагонали равна 32. Значит вся диагональ 2×32=64см. Все. Нарисуйте и назовите буквами. Мои слова запишите через буквы
Порой нужно доказать и очевидное. Обозначим центры окружностей К и М, а точку пересечения АВ и прямой КМ - Н. Боковые стороны ∆ АКВ - радиусы, ⇒ ∆ АКВ - равнобедренный.⇒ ∠КАВ=∠ КВА Боковые стороны ∆ АМВ радиусы, ⇒ ∆ АМВ равнобедренный. ⇒ ∠МАВ=∠МВА В треугольниках КАМ и КВМ углы при А и В - сумма равных углов. ⇒ ∠КАМ=∠КВМ стороны КА=КВ, АМ=ВМ⇒ ∆ КАМ=∆КВМ по двум сторонам и углу между ними. ⇒ ∠АКН=∠ВКН, и ∆ АКН=∆ ВКН. ⇒ АН=ВН, и тогда КН - медиана равнобедренного ∆ АКВ, и его биссектриса и высота. ⇒ КН⊥АВ, что и требовалось доказать.
1) 2×5=10
2)S: a^2=10^2=100
Объяснение:
Вроде так, надеюсь