68/ если точка М одинаково удалена от сторон правильного шестиугольника, то ее проекция, точка О, - ортоцентр шестиугольника, а т.к одинаково от сторон, то это на вписанной окружности с центорм О и радиусом r r= a*(sqrt3) /2 r=3sqrt3 R=a R= 6cm
расс мотрим треуг МОА- прямоуг, угО=90*, ОА=3sqrt3 MO= x cm
по тПифагора МА=sqrt ( x^2 + (3sqrt3)^2)
69/ проекция М лежит в центре вписаной в ромб окружносити , т.е. в точке О пересечения диагоналей OH= r = 20cm
рассматриваем МОН -ррямоугольный О=90*, ОН =20см МН=20 см ,следовательно О=М , т.е расстояние от точки М до плоскости ромба =0
Если известны диагонали ромба d1 и d2, то одной из них (например d1) ромб разбивается на 2 равных треугольника ( равенство по 3м сторонам), площадь каждого из этих треугольников, ввиду того что диагонали ромба перпендикулярны и точкой пересечения деляться попалам, находиться как (1/2)*d1*(d2/2), (d2/2 -высота каждого треуг-ка, d1 - основание), т.о. площадь ромба
S=2*(1/2)*d1*(d2)/2=d1*d2/2.