Первый признак равенства треугольников (по двум сторонам и углу между ними). Если две стороны и угол между ними одного треугольника, соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Применение признака равенства треугольников в симметрии. Докажите, что центрально симметричные отрезки равны.
Равенство треугольников по двум сторонам и углу между ними. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
1. Треугольник - египетский, его стороны относятся, как 3:4:5, тогда первый катет 30 см, второй 40 см
3. Пусть АВСD - трапеция, угол В - тупой, АС - биссектриса, тогда угол ВСА = углу ACD и угол ВСА = углу CAD, как внутренние накрест лежащие при BC||AD и секущей AC/ Получили, треугольник ACD - равнобедренный (у него углы при основании равны), значит, CD=AD=6 см, а так как трапеция равнобедренная, то AB=CD=6 см. По условию, периметр = 22 см, тогда AB+BC+CD+AD = 22 6+6+6+BC=22 18+BC=22 BC=22-18 BC=4 см
ответ: AB=AD=CD=6 см, ВС=4 см
4. Площадь АСВ = 1/2 х ВС х СА = 1/2 х 3х 4 = 6 cм квадратных Пол свойству биссектрисы угла треугольника: DC: DB = 3:4, тогда 3Х+5Х=4
8Х=4 Х=0,5, тогда DС=1,5 см, площадь треугольника ACD равна 1/2 х DC x AC = о,5 х 1,5 х 3 = 2,25 cм квадратных, а площадь треугольника ADC = 6 - 2,25 = 3,75 cм квадратных
ответ: 2,25 и 3,75 см квадратных
2.
Пусть ABCD - ромб, угол А - тупой, АС + BD = d ( по условию сумма диагоналей ), сторона ВС = а. Тогда ВО + ОС = 0,5 d (1), где О - точка пересечения диагоналей, по теореме Пифагора: ВО^2 + ОС^2 = a^2 (2)
(1) Возведем обе части уравнения в квадрат, получим ВО^2 + 2 ВОхОС +ОС^2 = 0, 25 d^2 (1.1)
Найдем радиус вписанной окружности по формуле r=√mn, где m и n - длины отрезков, на которые точка касания делит большую сторону. r=√3*12=√36=6 см. Высота трапеции равна 2 радиусам вписанной окружности, поэтому h=6*2=12 см. Меньшая боковая сторона = h = 12 см. Сумма боковых сторон = 12+3+12=27 см. Из свойств описанной трапеции следует, что сумма длин боковых сторон равна сумме длин оснований. Сумма оснований=27 см. Находим площадь трапеции, которая равна полусумме оснований, умноженной на высоту. S=27:2*12=162 см². ответ: 162 см².
Первый признак равенства треугольников (по двум сторонам и углу между ними). Если две стороны и угол между ними одного треугольника, соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Применение признака равенства треугольников в симметрии. Докажите, что центрально симметричные отрезки равны.