Центр окружности, вписанной в равнобедренную трапецию, лежит на середине отрезка КЕ (точки К и Е - середины оснований).
Так как точка пересечения диагоналей лежит на том же отрезке, но ближе к меньшему основанию, высота пирамиды лежит на образующей конуса, проходящей через точку К.
Высота трапеции равна диаметру вписанной окружности, а суммы противолежащих сторон равны.
Итак, ВР = КЕ = 2R,
AB + CD = AD + BC
AD = b, BC = a.
Чтобы найти высоту пирамиды, надо знать длину КН, а для этого найти расстояние между центром окружности и основанием высоты пирамиды ОН = х.
ΔАВР: ∠АРВ = 90°,
AP = BP · ctg α = 2R · ctg α
Тогда
Так как по свойству равнобедренной трапеции
АР = (AD - BC) / 2, то
b - a = 2AP = 4R · ctg α
ΔAHD ~ ΔCHB по двум углам, тогда их высоты относятся как сходственные стороны:
a(R + x) = b(R - x)
aR + ax = bR - bx
x(a + b) = R(b - a)
KH = R - x = R(1 - cos α)
Справа на рисунке осевое сечение конуса, проходящее через хорду КЕ.
∠KSH = ∠KMO = β как соответственные при SH║MO и секущей КМ.
SH = KH · ctg β = R(1 - cos α) · ctgβ
Итак, объем пирамиды:
Осталось из прямоугольного треугольника МОЕ выразить R:
Площадь треугольника, вписанного в окружность, равна S = (a b c) / (4 R) также площадь равна S = 1/2 c h. Следовательно, (a b c) / (4 R) = 1/2 c h Так как треугольник равнобедренный, a = b = 5, R = 5; c - основание тр-ка.Сократим уравнение на величину "с" и подставим значения:(5*5) / (4*5) = 1/2 * h5/4 = 1/2 hh = 5/2 – высота треугольникаПо теореме Пифагора половина основания равна:1/2 с = √52 - (5/2)2 = √75/4 = √3*25/4 = 5/2 √3,Полное основание равно 2 * 5/2 √3 = 5√3Площадь треугольника будет равна:S = 1/2 * 5√3 * 5/2 = 25/4 √3
Объяснение:
Центр окружности, вписанной в равнобедренную трапецию, лежит на середине отрезка КЕ (точки К и Е - середины оснований).
Так как точка пересечения диагоналей лежит на том же отрезке, но ближе к меньшему основанию, высота пирамиды лежит на образующей конуса, проходящей через точку К.
Высота трапеции равна диаметру вписанной окружности, а суммы противолежащих сторон равны.
Итак, ВР = КЕ = 2R,
AB + CD = AD + BC
AD = b, BC = a.
Чтобы найти высоту пирамиды, надо знать длину КН, а для этого найти расстояние между центром окружности и основанием высоты пирамиды ОН = х.
ΔАВР: ∠АРВ = 90°,
AP = BP · ctg α = 2R · ctg α
Тогда
Так как по свойству равнобедренной трапеции
АР = (AD - BC) / 2, то
b - a = 2AP = 4R · ctg α
ΔAHD ~ ΔCHB по двум углам, тогда их высоты относятся как сходственные стороны:
a(R + x) = b(R - x)
aR + ax = bR - bx
x(a + b) = R(b - a)
KH = R - x = R(1 - cos α)
Справа на рисунке осевое сечение конуса, проходящее через хорду КЕ.
∠KSH = ∠KMO = β как соответственные при SH║MO и секущей КМ.
SH = KH · ctg β = R(1 - cos α) · ctgβ
Итак, объем пирамиды:
Осталось из прямоугольного треугольника МОЕ выразить R: